T1 rho analysis
Import the necessary libraries¶
specify path to the data file and ensure that "\\" is appended to the end of the path¶
- create an instance t1 of T1Functions
Note: This data is a T1ρ data
Read and convert Bruker NMR data to NMRPipe and CSDM formats: read_and_convert_bruker_data.¶
The function automatically detects and loads the variable delay list (vdlist, vplist, vclist) used in the experiment. In this case, the vplist is loaded, but vdlist terminology will be used.
It returns a tuple containing three elements: a list of 1D NMR (spectra), the variable delay list (vd_list), and the complete dataset in CSDM format (csdm_ds)
Process the returned 1D NMR spectra¶
- apply the Gaussian apodisation (fwhm)
- zero-filling for increased digital resolution (zero_fill_factor)
- 0th order phase correction (ph0)
- 1st order phase correction (ph1) -- this phase correction is a bit nuanced and so far, a value of 0 - 0.6 ° has worked quite well: see the "Understanding Phasing" example under User Guide
- In applying the 1st order correction, you would have to experiment with the mentioned values to obtain a pure absorption line-shape signal
exp_spectra = []
for i, spectrum in enumerate(spectra):
if i == 0:
exp_spectrum = t1.process_spectrum(spectrum, fwhm="1200 Hz", zero_fill_factor=10, ph0=-25, ph1=0.005)
exp_spectra.append(exp_spectrum)
elif i == 1:
exp_spectrum = t1.process_spectrum(spectrum, fwhm="1200 Hz", zero_fill_factor=10, ph0=-20, ph1=0.005)
exp_spectra.append(exp_spectrum)
elif i == 2:
exp_spectrum = t1.process_spectrum(spectrum, fwhm="1200 Hz", zero_fill_factor=10, ph0=5, ph1=0.006)
exp_spectra.append(exp_spectrum)
elif i == 3:
exp_spectrum = t1.process_spectrum(spectrum, fwhm="1200 Hz", zero_fill_factor=10, ph0=5, ph1=0.004)
exp_spectra.append(exp_spectrum)
elif i == 4:
exp_spectrum = t1.process_spectrum(spectrum, fwhm="1200 Hz", zero_fill_factor=10, ph0=-5, ph1=0.005)
exp_spectra.append(exp_spectrum)
elif i ==5:
exp_spectrum = t1.process_spectrum(spectrum, fwhm="1200 Hz", zero_fill_factor=10, ph0=-5, ph1=0.006)
exp_spectra.append(exp_spectrum)
else:
exp_spectrum = t1.process_spectrum(spectrum, fwhm="1200 Hz", zero_fill_factor=10, ph0=-10, ph1=0.005)
exp_spectra.append(exp_spectrum)
Find the area under the peak of interest using the integrate_spectrum_region()
function¶
The integration function employed here integrate each spectrum using trapezoid and simpson function, respectively. ppm_start and ppm_end need to be defined as the starting and ending ppm region needed to be integrated. The integrated area of each spectrum is appended to trapz_ints and simps_ints, respectively. x_ and y_regions are regions of integration in the spectra -- needed for visuals.
- There is no difference between trapz and simps, so you would have to use either of the two in a later stage
trapz_ints = []
simps_ints = []
x_regions = []
y_regions = []
int_uncs = []
for i, exp_spectrum in enumerate(exp_spectra):
trapz_int, simps_int, x_region, y_region, int_unc = t1.integrate_spectrum_region(exp_spectrum, ppm_start=-200, ppm_end=200)
trapz_ints.append(trapz_int)
simps_ints.append(simps_int)
x_regions.append(x_region)
y_regions.append(y_region)
int_uncs.append(int_unc)
plot_spectra_and_zoom() function¶
- creates plots of NMR spectra with both full view and zoomed regions (max and min x zoom)
- highlights the integrated x_ and y_regions on the zoomed plot
- returns maximum intensities from each spectrum (abs_ints): relevant for relaxometry just like integrated areas contained in trapz_ints and simps_ints
Convert vd list to numpy array and ensure that the list and extracted intensities and areas are of the same length¶
#vd_list imported from the file_path and converted into a numpy array
vd_list = np.array(vd_list)
#slicing the vd_list if some data points are shitty
vd_list = vd_list[:len(abs_ints)]
#slicing the intensities if some data points are shitty
simps_ints = simps_ints[:len(vd_list)]
abs_ints = abs_ints[:len(vd_list)]
Viusalise the list and the extracted intensities and areas¶
- the extracted areas from either trapz or simps integration and extracted max intensities of each spectrum are plotted against corresponding time in vd_list
fig, ax = plt.subplots()
ax.scatter(vd_list, abs_ints, color='blue', label='intensity extraction')
ax.scatter(vd_list, simps_ints, color='red', label='area extraction')
ax.semilogy()
ax.semilogx()
ax.legend(loc='best', frameon=True)
ax.set_xlabel(r'$\tau$ (s)')
ax.set_ylabel('Intensity (arbitrary unit)')
plt.tight_layout()
plt.show()
Let us fit one of the data with a tri-expdec function: here we are using the area, the intesities can also be utilised¶
This choice of fitting is because the system has multiple relaxation times and so far 3 distinct relaxation behaviours have been identified -- so the choice of using tri-expdec
#T1rho fitting of the data
fig, ax = plt.subplots()
output_lines = []
# Define a list of tuples for the two sets of intensities
intensity_sets = [
(simps_ints, 'Simps Area', 'Guess Curve', 'Fitted Curve', 'r'),
(abs_ints, 'Absolute Intensities', 'Guess Abs Int Curve', 'Fitted Curve Absolute Intensity', 'b')
]
# Initial guess parameters
T1_guess = 3347
T2_guess = 34555
T3_guess = 52
for i, (ints, label, guess_label, fitted_label, color) in enumerate(intensity_sets):
if i ==0:
# A_guess = np.max(ints)
A_guess = 1e7
B_guess = np.min(ints)
C_guess = 0.48
D_guess = 0.2
E_guess = 0.53
ax.scatter(vd_list, ints, color=color, marker='o', facecolors='none', label=label)
# Guess curve
guess_integrated_int = t1.tri_expdec(vd_list, T1_guess, T2_guess, T3_guess, A_guess, C_guess, D_guess, E_guess)
# guess_integrated_int = t1.expdec(vd_list, T1_guess, T2_guess, T3_guess, A_guess, B_guess)
# ax.plot(vd_list, guess_integrated_int, color='brown', linestyle='--', label=guess_label, alpha=0.9)
# Fit the data
popt, pcov = curve_fit(t1.tri_expdec, vd_list, ints, p0=[T1_guess, T2_guess, T3_guess, A_guess, C_guess, D_guess, E_guess])
# Save the fitted params and uncertainties
T1_fitted, T2_fitted, T3_fitted, A_fitted, C_fitted, D_fitted, E_fitted = popt
T1_unc, T2_unc, T3_unc, A_unc, C_unc, D_unc, E_unc = np.sqrt(np.diag(pcov))
#define T1 and T2
component_1 = A_fitted * (C_fitted)*np.exp(-vd_list/T1_fitted)
component_2 = A_fitted * (D_fitted)*np.exp(-vd_list/T2_fitted)
component_3 = A_fitted * (E_fitted)*np.exp(-vd_list/T3_fitted)
overall_component = component_1 + component_2 + component_3
# Extract the fitted curve
fitted_curve = t1.tri_expdec(vd_list,T1_fitted, T2_fitted, T3_fitted, A_fitted, C_fitted, D_fitted, E_fitted)
ax.plot(vd_list, fitted_curve, linestyle='-', color=color, label=fitted_label)
ax.plot(vd_list, component_1, linestyle='--', color='black', alpha=0.5, label='component_1')
ax.plot(vd_list, component_2, linestyle='--', color='blue', alpha=0.5, label='component_2')
ax.plot(vd_list, component_3, linestyle='--', color='green', alpha=0.5, label='component_3')
# print the fitted parameters and uncertainties
print(f'T1_{label.lower().replace(" ", "_")}: {T1_fitted} ± {T1_unc}')
print(f'T2_{label.lower().replace(" ", "_")}: {T2_fitted} ± {T2_unc}')
print(f'T3_{label.lower().replace(" ", "_")}: {T3_fitted} ± {T3_unc}')
print(f'A_{label.lower().replace(" ", "_")}: {A_fitted} ± {A_unc}')
print(f'C_{label.lower().replace(" ", "_")}: {C_fitted} ± {C_unc}')
print(f'D_{label.lower().replace(" ", "_")}: {D_fitted} ± {D_unc}')
print(f'E_{label.lower().replace(" ", "_")}: {E_fitted} ± {E_unc}')
print(E_fitted+C_fitted+D_fitted)
# #Format the string and append fitted parameters
output_lines.append(f'M0_{label.lower().replace(" ", "_")}: {A_fitted} ± {A_unc}\n')
output_lines.append(f'T1_{label.lower().replace(" ", "_")}: {T1_fitted} ± {T1_unc}\n')
output_lines.append(f'T2_{label.lower().replace(" ", "_")}: {T2_fitted} ± {T2_unc}\n')
output_lines.append(f'T3_{label.lower().replace(" ", "_")}: {T3_fitted} ± {T3_unc}\n')
output_lines.append(f'C_{label.lower().replace(" ", "_")}: {C_fitted} ± {C_unc}\n')
output_lines.append(f'D_{label.lower().replace(" ", "_")}: {D_fitted} ± {D_unc}\n')
output_lines.append(f'E_{label.lower().replace(" ", "_")}: {E_fitted} ± {E_unc}\n')
#save the fitted params and uncertainties in a text file
with open(filepath+'multi_exp_fitted_params.txt', 'w') as f:
f.writelines(output_lines)
ax.semilogx()
ax.legend(loc='best', frameon=False)
ax.set_xlabel(r'$\tau$ (s)')
ax.set_ylabel('Intensity (arbitrary unit)')
#plot the covariance matrix in another figure and label the axes with the fitted parameters
plt.savefig(filepath+'multi_exp_T1_fitting.svg', bbox_inches='tight', transparent=True)
plt.tight_layout()
fig, ax = plt.subplots()
im = ax.imshow(np.log(np.abs(pcov)))
ax.set_xticks(np.arange(len(popt)))
ax.set_yticks(np.arange(len(popt)))
ax.set_xticklabels(['T1', 'T2', 'T3', 'A', 'C', 'D', 'E'])
ax.set_yticklabels(['T1', 'T2', 'T3', 'A', 'C', 'D', 'E'])
plt.colorbar(im)
plt.show()
plt.clf()
plt.close()